Bibliography
Papers I reference, cite, and find particularly influential in my research on carrion ecology and forensic entomology can be found here.
Carrion Ecology & Decomposition
(2025).
A review of the estimation of postmortem interval using forensic entomology.
Medicine, Science and the Law, 65(1), 52-64.
DOI: 10.1177/00258024241275893
(2025).
From carrion to soil: microbial recycling of animal carcasses.
Trends in Microbiology, 33(2), 194-207.
DOI: 10.1016/j.tim.2024.09.003
(2024).
Multi-omics of human decomposition.
Nature, 632(8025), 601-609.
DOI: 10.1038/s41586-024-07777-5
(2024).
Carrion ecology and evolution.
Annual Review of Ecology, Evolution, and Systematics, 55(1).
DOI: 10.1146/annurev-ecolsys-102320-091735
(2024).
Biocrust-modulated decomposition processes in global drylands.
Science, 383(6686), 958-964.
DOI: 10.1126/science.adl0773
(2024).
Decomposition of biological soil crusts: insights from laboratory reciprocal transplant experiments.
mSystems, 9(1), e01106-23.
DOI: 10.1128/msystems.01106-23
(2024).
Litter decomposition across a land-use gradient in the Llanos de Moxos region of Bolivia.
Applied Soil Ecology, 193, 105161.
DOI: 10.1016/j.apsoil.2023.105161
(2023).
The temperature dependence of organic-matter decomposition—still a total mystery mostly.
Biogeochemistry, 161(3), 329-348.
DOI: 10.1007/s10533-022-00960-2
(2023).
Diverse effects of climate, land use, and insects on dung and carrion decomposition.
Ecology, 104(3), e3939.
DOI: 10.1002/ecy.3939
(2023).
Soil testate amoebae assemblages from human cadaver decomposition sites.
Forensic Science International, 351, 111824.
DOI: 10.1016/j.forsciint.2023.111824
(2023).
Molecular advances to combat antibiotic resistance: a focus on important Gram-positive pathogen enterococci.
World Journal of Microbiology and Biotechnology, 39(3), 78.
DOI: 10.1007/s11274-022-03518-1
(2018).
Spatial impacts of a multi-individual grave on microbial and microfaunal communities and soil biogeochemistry.
PLoS ONE, 13(12), e0208845.
DOI: 10.1371/journal.pone.0208845
(2022).
Accuracy of postmortem interval estimation from vitreous potassium concentration: A systematic review and meta-analysis.
Legal Medicine, 59, 102131.
DOI: 10.1016/j.legalmed.2022.102131
(2022).
The effect of cadaver mass on soil testate amoeba communities during decomposition.
Forensic Science International, 337, 111358.
DOI: 10.1016/j.forsciint.2022.111358
(2021).
The application of forensic proteomics for the study of human decomposition.
Talanta, 234, 122651.
DOI: 10.1016/j.talanta.2021.122651
(2016).
Microbial community assembly and metabolic function during mammalian corpse decomposition.
Science, 351(6269), 158-162.
DOI: 10.1126/science.aad2646
(2016).
The Thanatomicrobiome: A Missing Piece of the Microbial Puzzle of Death.
Frontiers in Microbiology, 7, 225.
DOI: 10.3389/fmicb.2016.00225
(2010).
An estimation of the post-mortem interval in human skeletal remains: A radial basis function approach using genetic algorithms.
Forensic Science International, 195(1-3), 164.e1-164.e11.
DOI: 10.1016/j.forsciint.2009.12.017
(2009).
Carrion decomposition and nutrient cycling in a semiarid shrub–steppe ecosystem.
Ecological Monographs, 79(4), 637-661.
DOI: 10.1890/08-0972.1
(2009).
Microbial community analysis of human decomposition on soil.
Criminal and Environmental Soil Forensics, 379-394.
(2007).
Cadaver decomposition in terrestrial ecosystems.
Die Naturwissenschaften, 94(1), 12-24.
DOI: 10.1007/s00114-006-0159-1
(1992).
Time since death determinations of human cadavers using soil solution.
Journal of Forensic Sciences, 37(5), 1236-1253.
DOI: 10.1520/JFS13311J
(2009).
Measurement of ninhydrin reactive nitrogen influx into gravesoil during aboveground and belowground carcass (Sus domesticus) decomposition.
Forensic Science International, 193(1-3), 37-41.
DOI: 10.1016/j.forsciint.2009.08.015
(2011).
Basic research in evolution and ecology enhances forensics.
Trends in Ecology & Evolution, 26(2), 53-55.
DOI: 10.1016/j.tree.2010.12.001
(2017).
A review of bacterial interactions with blow flies (Diptera: Calliphoridae) of forensic importance.
Annals of the Entomological Society of America, 110(1), 19-29.
DOI: 10.1093/aesa/saw086
(2010).
Debugging decomposition data—comparative taphonomic studies and the influence of insects and carcass size on decomposition rate.
Journal of Forensic Sciences, 55(1), 8-13.
DOI: 10.1111/j.1556-4029.2009.01206.x
(2008).
Insect succession and decomposition patterns on shaded and sunlit carrion in Saskatchewan in three different seasons.
Forensic Science International, 179(2-3), 219-240.
DOI: 10.1016/j.forsciint.2008.05.019
(1958).
A study of dog carcass communities in Tennessee, with special reference to the insects.
The American Midland Naturalist, 59(1), 213-245.
DOI: 10.2307/2422385
(2005).
Using accumulated degree-days to estimate the postmortem interval from decomposed human remains.
Journal of Forensic Sciences, 50(3), 1-9.
DOI: 10.1520/JFS2004017
(2001).
Medicolegal relevance of cadaver entomofauna for the determination of the time of death.
Forensic Science International, 120(1-2), 89-109.
DOI: 10.1016/s0379-0738(01)00416-9
(1985).
Scope and applications of forensic entomology.
Annual Review of Entomology, 30(1), 137-154.
DOI: 10.1146/annurev.en.30.010185.001033
(1991).
Aggregation and coexistence in a carrion fly community.
Ecological Monographs, 61(1), 75-94.
DOI: 10.2307/1943000
(2009).
Characterization of the bacterial communities associated with human decomposition.
Journal of Forensic Sciences, 54(2), 287-293.
DOI: 10.1111/j.1556-4029.2008.00965.x
(1991).
Effect of carcass size on rate of decomposition and arthropod succession patterns.
The American Journal of Forensic Medicine and Pathology, 12(3), 235-240.
DOI: 10.1097/00000433-199109000-00019
(1997).
On the body: insects' life stage presence and their postmortem artifacts.
Forensic Taphonomy: The Postmortem Fate of Human Remains, 415-448.
(1991).
Determination of postmortem interval by arthropod succession patterns.
Journal of Forensic Sciences, 36(6), 1758-1764.
DOI: 10.1520/JFS13189J
(1993).
Estimation of postmortem interval using arthropod development and successional patterns.
Forensic Science Review, 5(2), 81-94.
(1986).
Arthropod succession patterns in exposed carrion on the island of O'ahu, Hawaiian Islands, USA.
Journal of Medical Entomology, 23(5), 520-531.
DOI: 10.1093/jmedent/23.5.520
(1985).
A beaded lacewing larva from Dominican amber, with comments on the biology of the family (Neuroptera: Berothidae).
Journal of Natural History, 19(3), 513-521.
DOI: 10.1080/00222938500770321
(1974).
Carrion reduction by animals in contrasting tropical habitats.
Biotropica, 6(1), 51-63.
DOI: 10.2307/2989677
(1957).
An analysis of arthropod succession in carrion and the effect of its decomposition on the soil fauna.
Australian Journal of Zoology, 5(1), 1-12.
DOI: 10.1071/ZO9570001
(2004).
Studies on seasonal arthropod succession on carrion in the southeastern Iberian Peninsula.
International Journal of Legal Medicine, 118(4), 197-205.
DOI: 10.1007/s00414-004-0446-3
(1996).
Initial studies on insect succession on carrion in Southwestern British Columbia.
Journal of Forensic Sciences, 41(4), 617-625.
DOI: 10.1520/JFS13964J
(2004).
Forensic entomology.
Die Naturwissenschaften, 91(2), 51-65.
DOI: 10.1007/s00114-003-0493-5
(2019).
Necrobiome framework for bridging decomposition ecology of autotrophically and heterotrophically derived organic matter.
Ecological Monographs, 89(1), e01331.
DOI: 10.1002/ecm.1331
(2013).
The role of carrion in maintaining biodiversity and ecological processes in terrestrial ecosystems.
Oecologia, 171(4), 761-772.
DOI: 10.1007/s00442-012-2460-3
(2019).
Estimating the postmortem interval using microbiome data.
Estimating the Time Since Death: The Postmortem Interval, 71-82.
DOI: 10.1016/B978-0-12-815731-2.00005-0
(2016).
Microbial ecology of the salmon necrobiome: evidence salmon carrion decomposition influences aquatic and terrestrial insect microbiomes.
Environmental Microbiology, 18(5), 1511-1522.
DOI: 10.1111/1462-2920.13187
(2014).
The potential use of bacterial community succession in forensics as described by high throughput metagenomic sequencing.
International Journal of Legal Medicine, 128(1), 193-205.
DOI: 10.1007/s00414-013-0872-1
(2016).
Microbial ecology of the salmon necrobiome: evidence salmon carrion decomposition influences aquatic and terrestrial insect microbiomes.
Environmental Microbiology, 18(5), 1511-1522.
DOI: 10.1111/1462-2920.13187
(2014).
Volatile organic compounds from human decomposition: new directions for detection.
Forensic Science International, 244, 231-241.
DOI: 10.1016/j.forsciint.2014.09.010
(2005).
A study of volatile organic compounds evolved from the decaying human body.
Forensic Science International, 153(2-3), 147-155.
DOI: 10.1016/j.forsciint.2004.08.015
(2001).
Beyond the grave—understanding human decomposition.
Microbiology Today, 28(4), 190-192.
(2008).
Decomposition chemistry in a burial environment.
Soil Analysis in Forensic Taphonomy, 203-223.
(2004).
Review of human decomposition processes in soil.
Environmental Geology, 45(4), 576-585.
DOI: 10.1007/s00254-003-0913-z
(2013).
Effects of different types of soil on decomposition: An experimental study.
Legal Medicine, 15(3), 149-156.
DOI: 10.1016/j.legalmed.2012.11.003
(1990).
Time since death and decomposition of the human body: variables and observations in case and experimental field studies.
Journal of Forensic Sciences, 35(1), 103-111.
DOI: 10.1520/JFS12806J
(1985).
Decomposition of buried bodies and methods that may aid in their location.
Journal of Forensic Sciences, 30(3), 836-852.
DOI: 10.1520/JFS11004J
(1989).
Decay rates of human remains in an arid environment.
Journal of Forensic Sciences, 34(3), 607-616.
DOI: 10.1520/JFS12680J
(1997).
Outdoor decomposition rates in Tennessee.
Forensic Taphonomy, 181-186.
Forensic Entomology
(2025).
A review of the estimation of postmortem interval using forensic entomology.
Medicine, Science and the Law, 65(1), 52-64.
DOI: 10.1177/00258024241275893
(2023).
Diverse effects of climate, land use, and insects on dung and carrion decomposition.
Ecology, 104(3), e3939.
DOI: 10.1002/ecy.3939
(2019).
Necrobiome framework for bridging decomposition ecology of autotrophically and heterotrophically derived organic matter.
Ecological Monographs, 89(1), e01331.
DOI: 10.1002/ecm.1331
(2017).
A review of bacterial interactions with blow flies (Diptera: Calliphoridae) of forensic importance.
Annals of the Entomological Society of America, 110(1), 19-29.
DOI: 10.1093/aesa/saw086
(2014).
The potential use of bacterial community succession in forensics as described by high throughput metagenomic sequencing.
International Journal of Legal Medicine, 128(1), 193-205.
DOI: 10.1007/s00414-013-0872-1
(2016).
Microbial community assembly and metabolic function during mammalian corpse decomposition.
Science, 351(6269), 158-162.
DOI: 10.1126/science.aad2646
(2011).
Basic research in evolution and ecology enhances forensics.
Trends in Ecology & Evolution, 26(2), 53-55.
DOI: 10.1016/j.tree.2010.12.001
(2010).
Debugging decomposition data—comparative taphonomic studies and the influence of insects and carcass size on decomposition rate.
Journal of Forensic Sciences, 55(1), 8-13.
DOI: 10.1111/j.1556-4029.2009.01206.x
(2008).
Insect succession and decomposition patterns on shaded and sunlit carrion in Saskatchewan in three different seasons.
Forensic Science International, 179(2-3), 219-240.
DOI: 10.1016/j.forsciint.2008.05.019
(2004).
Forensic entomology.
Die Naturwissenschaften, 91(2), 51-65.
DOI: 10.1007/s00114-003-0493-5
(2004).
Studies on seasonal arthropod succession on carrion in the southeastern Iberian Peninsula.
International Journal of Legal Medicine, 118(4), 197-205.
DOI: 10.1007/s00414-004-0446-3
(2001).
Medicolegal relevance of cadaver entomofauna for the determination of the time of death.
Forensic Science International, 120(1-2), 89-109.
DOI: 10.1016/s0379-0738(01)00416-9
(1997).
On the body: insects' life stage presence and their postmortem artifacts.
Forensic Taphonomy: The Postmortem Fate of Human Remains, 415-448.
(1996).
Initial studies on insect succession on carrion in Southwestern British Columbia.
Journal of Forensic Sciences, 41(4), 617-625.
DOI: 10.1520/JFS13964J
(1993).
Estimation of postmortem interval using arthropod development and successional patterns.
Forensic Science Review, 5(2), 81-94.
(1991).
Determination of postmortem interval by arthropod succession patterns.
Journal of Forensic Sciences, 36(6), 1758-1764.
DOI: 10.1520/JFS13189J
(1991).
Effect of carcass size on rate of decomposition and arthropod succession patterns.
The American Journal of Forensic Medicine and Pathology, 12(3), 235-240.
DOI: 10.1097/00000433-199109000-00019
(1991).
Aggregation and coexistence in a carrion fly community.
Ecological Monographs, 61(1), 75-94.
DOI: 10.2307/1943000
(1986).
Arthropod succession patterns in exposed carrion on the island of O'ahu, Hawaiian Islands, USA.
Journal of Medical Entomology, 23(5), 520-531.
DOI: 10.1093/jmedent/23.5.520
(1985).
Scope and applications of forensic entomology.
Annual Review of Entomology, 30(1), 137-154.
DOI: 10.1146/annurev.en.30.010185.001033
(1985).
A beaded lacewing larva from Dominican amber, with comments on the biology of the family (Neuroptera: Berothidae).
Journal of Natural History, 19(3), 513-521.
DOI: 10.1080/00222938500770321
(1958).
A study of dog carcass communities in Tennessee, with special reference to the insects.
The American Midland Naturalist, 59(1), 213-245.
DOI: 10.2307/2422385
(1957).
An analysis of arthropod succession in carrion and the effect of its decomposition on the soil fauna.
Australian Journal of Zoology, 5(1), 1-12.
DOI: 10.1071/ZO9570001
(2010).
A meta‐analysis of resource pulse–consumer interactions.
Ecological Monographs, 80(1), 125-151.
DOI: 10.1890/08-1996.1
(2019).
Rapid identification of forensically important flesh flies (Diptera: Sarcophagidae) by MALDI-TOF MS.
Forensic Science International, 305, 109935.
DOI: 10.1016/j.forsciint.2019.109935
(2006).
The fire ants.
The Belknap Press of Harvard University Press.
(2013).
Molecular systematics of the Calliphoridae (Diptera: Oestroidea): evidence from one mitochondrial and three nuclear genes.
Journal of Medical Entomology, 50(1), 15-23.
DOI: 10.1603/me11288
(2014).
Cover yourself: forensically relevant blow flies (Diptera: Calliphoridae) are visual not olfactory foragers.
Forensic Science International, 240, 96-102.
DOI: 10.1016/j.forsciint.2014.04.013
(2009).
Models of development for blowfly sister species Chrysomya chloropyga and Chrysomya putoria.
Medical and Veterinary Entomology, 23(1), 56-61.
DOI: 10.1111/j.1365-2915.2008.00772.x
(2009).
Thermal ecophysiology of seven carrion-feeding blowflies in Southern Africa.
Entomologia Experimentalis et Applicata, 131(1), 11-19.
DOI: 10.1111/j.1570-7458.2009.00824.x